
Hadoop – An Overview

- Socrates CCDH



What is Big Data?

• Volume Not Gigabyte. Terabyte, Petabyte, 
Exabyte, Zettabyte

- Due to handheld gadgets ,and HD format images and videos
- In total data, 90% of them collected in last 2 years.

• Variety Structured, Semi-structured, and un-
structured data
- Due to texting, mms, various audio and video formats, and file formats

• Velocity Rate at which data is produced
- Due to proliferation of technology, social media websites, texting, mms etc



Challenges with Big Data

• Storage
- How can I store such large data?

- What are the options available?

• Network Bandwidth
- How can I transport the data to my application?

- How can I efficiently use the Corporate Network?

• Performance
- How can I seek, retrieve, and work on the data?

- What will be the performance?

• Fault Tolerance
- What if my database fails? Or What if I want to upgrade my DB?

- Can I continue to serve my customers? In other words, is my system fault tolerant? 



What is the Solution?

Hadoop



What is Hadoop?

• Not a single technology, but an Eco-system

• Not a RDBMS, but a File System

• Developed in Java – supports Ruby, Pearl, and 
Python scripts. Supports C, C++

• Can be integrated with NoSQL DB – Not Only 
SQL (Hbase, MongoDB, Cassandra, Neo4J, 
Riak)

• Not a silver-bullet solution – does not solve all 
the problems in an Enterprise



Two Core Projects

1. HDFS – Hadoop Distributed File System

– A scalable, fault-tolerant file system 

– Meant for storing of large files (small number of 
large files)

2. MR (MapReduce) Framework
– A computational framework that works on top of 

HDFS



Architecture & Processes

• Master - Slave Architecture

Components Master Slave

HDFS Name Node,
Secondary  Name Node

Data Node

Map Reduce Job Tracker Task Tracker

• Daemon Processes

1. Name Node
2. Secondary  Name Node
3. Job Tracker 

One process each

4. Data Node
5. Task Tracker

Many processes 



Rack-1 Switch Rack-2 Switch Rack-3 Switch

Network Switch

Rack-1 Rack-2 Rack-3

Data Node/ Task Tracker

Data Node/ Task Tracker

Name Node Sec Name Node

Job Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

MASTER

SLAVE

Hadoop Infrastructure - PROD Cluster



Hadoop Infrastructure

• Rack Servers as opposed to Blade Servers

• Commodity hardware

• Graceful addition or removal of nodes

• Fault Tolerant

• Can run on any OS
(Unix, Mac, Windows)

Rack-1 Switch

Rack-1

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker

Data Node/ Task Tracker



File

B1

B1B1B1

B2

B2B2B2

100 MB

64 MB 36 MB

Rack-2 Switch Rack-3 Switch Rack-4 Switch

B1

B1

B1

B2

B2B2

Network Switch

Rack-2 Rack-3 Rack-4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Rack-1 Switch

Rack-1

Name Node

Sec Name Node

Job Tracker

- - -

MASTER SLAVE

HDFS – File Copy



Rack-2 Switch Rack-3 Switch Rack-4 Switch

B1

B1

B1

B2

B2B2

Network Switch

Rack-2 Rack-3 Rack-4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Rack-1 Switch

Rack-1

Name Node

Job Tracker

- - -

HDFS – Fault Tolerance

Sec Name Node



Rack-2 Switch Rack-3 Switch Rack-4 Switch

B1

B1

B1

B2

B2B2

Network Switch

Rack-2 Rack-3 Rack-4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Rack-1 Switch

Rack-1

Name Node

Job Tracker

- - -

B1

HDFS – Fault Tolerance

1. Node 3 in Rack-3 goes down

2. Block B1 gets copied onto Node 1 in Rack-3 to maintain replication factor

Sec Name Node



Rack-2 Switch Rack-3 Switch Rack-4 Switch

B1

B1

B2

B2B2

Network Switch

Rack-2 Rack-3 Rack-4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 4

Node 1

Node 2

Node 3

Node 4

Rack-1 Switch

Rack-1

Name Node

Job Tracker

- - -

B1

HDFS – Fault Tolerance

B1 Node 3

1. Node 3 in Rack-3 goes down

2. Block B1 gets copied onto Node 1 in Rack-3 to maintain replication factor

3. Node 3 in Rack-3 comes-up after some time

4. Block B1 from Node 3 in Rack-3 gets deleted to maintain replication factor

Sec Name Node



HDFS Summary

• Name Node is a Single Point of Failure (SPOF) in HDFS

• Name Node maintains metadata. They are, list of
1. blocks in each data node – Helps replicate the blocks in the event of Data Node failure

2. files and directories in HDFS. hadoop fs –ls

3. # of blocks and its location for a given file (foo.txt-B1,B2; faa.txt-B3,B4,B5)

4. operations carried out in HDFS

• Secondary Name Node:
1. NOT a backup name node

2. Copies namespace image and log data from Name Node to permanent storage

3. Helps bring-up the Name Node in case of failure

• Default block size: 64 MB

• Default replication factor: 3

• HDFS storage capacity: (Cluster Capacity/ Repl factor)



• Data Node stores actual data

• Data Node sends periodical “Heartbeat signal” 
(block report, storage capacity) - say every few secs to 
Name Node

• Name Node contacts Data node as response to 
Heartbeat signal only

• Under-replication and Over-replication carried-
out through Heartbeat signals.

HDFS Summary – Contd..



Traditional Application

• Application size is constant, but data size varies

• Data gets transmitted through network where 
process/program resides

• Network capacity remains same, but “Volume” keeps 
increasing (remember ‘3-V’s ??)



Map Reduce

Move the code to where data resides – Data Localization

Components Master Slave

Map Reduce Job Tracker Task Tracker

Rack-2 Switch Rack-3 Switch Rack-4 Switch

B1

B1

B1

B2

B2B2

Network Switch

Rack-2 Rack-3 Rack-4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Rack-1

Name Node

Sec Name Node

Job Tracker

- - -

MASTER SLAVE

T1

T1

Rack-1 Switch



Map Reduce
• Map Reduce consists of two phases

- Map Phase

- Reduce Phase

• Mapper accepts input as key/value pair and 
emits result as key/value pair

• Map function is called for one record per time.

• Reducer task starts after all Map tasks are done

• Reducer gets executed on the Mapper output

• Mapper & Reducer may output zero or more 
key/value pair

• Speculative Execution



How Mapper Works?
(Word count problem)

Block 1 Input Split 1 Rec Reader 1 Mapper 1

Reads Referenced DataActual Data Reference to Data Performs Mapping

Block 2

Block 3

Input Split 2

Input Split 3

Rec Reader 2

Rec Reader 3

Mapper 2

Mapper 3

Interm K/V Pair

Deer:1, Bear:1, 
River:1

Car:1, Car:1, 
River:1

Deer:1, Car:1, 
Deer:1

1 Deer Bear River
2 Car Car River
3 Deer Car Deer

Block 1 Input Split 1 Rec Reader 1 Mapper 1

Block 2

Block 3

Input Split 2

Input Split 3

Rec Reader 2

Rec Reader 3

Mapper 2

Mapper 3

Interm K/V Pair

Deer:1, Bear:1, 
River:1

Car:{1,1} , 
River:1

Deer:{1,1}, 
Car:1

Combiner 1

Combines Mapper O/P

Combiner 2

Combiner 3

W
/O

 C
o

m
b

in
e

r
W

it
h

 C
o

m
b

in
er

Input:  Key-Value pair
Output: Zero, one, or more interm Key-Value pair



How Reducer Works?

Bear: 1
Car: 3

Deer: 3
River: 2

Interm K/V Pair

Deer:1, Bear:1, 
River:1

Car:1, Car:1, 
River:1

Deer:1, Car:1 , 
Deer:1

Bear: 1
Car: 1
Car: 1
Car: 1

Deer: 1
Deer: 1
Deer: 1
River: 1
River: 1

Shuffling

Reducer

Bear: 1
Car: 3
Deer: 3
River: 2

Output

Bear: 1
Car: 3

Deer: 3
River: 2

Interm K/V Pair

Deer:1, Bear:1, 
River:1

Car:{1,1}, 
River:1

Deer:{1,1} 
Car:1

Bear: 1
Car: 2
Car: 1

Deer: 1
Deer: 2
River: 1
River: 1

Reducer

Bear: 1
Car: 3
Deer: 3
River: 2

Output

W
/O

 C
o

m
b

in
e

r
W

it
h

 C
o

m
b

in
er

Partitioning
Sorting

Partitioning
Sorting

Input: Interm Key-Value pair from Mapper
Output: One value per key



Map Reduce Summary

• Data Localization

• Speculative Execution

• Parallel Processing

• Batch Processing

• Sorted Output based on key

• Combiners and Reducers are optional



Challenges with Big Data

• Storage
- How can I store such large data?

- What are the options available?

• Network Bandwidth
- How can I transport the data to my application?

- How can I efficiently use the Corporate Network?

• Performance
- How can I seek, retrieve, and work on the data?

- What will be the performance?

• Fault Tolerance
- What if my database fails? Or What if I want to upgrade my DB?

- Can I continue to serve my customers? In other words, is my system fault tolerant? 

1. Distributed storage
2. Add more machine w/o affecting the 

Data/ App
3. Increase hard disk capacity

1. MapReduce: Perform parallel 
processing

2. Minimize seek rate by reading full 
block of data

1. Data localization: Ship code to the data 
(as opposed to traditional model)

1. Make redundant data copy
2. Speculative Execution



Hadoop Ecosystem

Hive – Developed by Facebook

• Provides SQL like interface

• Commands are converted into MapReduce jobs

• Can be used by users familiar with SQL

• Does not support all SQL capabilities (say sub-query)

HDFS

HIVE

M
ap

R
ed

u
ce

Metastore

SELECT * FROM employee; 

SELECT * FROM employee

WHERE id > 100

ORDER BY ASC

LIMIT 20;



Hadoop Ecosystem

Pig – Developed by Yahoo!

• High level platform for MapReduce

• Uses PigLatin language

• Commands are converted into MapReduce jobs

• Does not require Metastore like HIVE

HDFS

HIVE

M
ap

R
ed

u
ce

Metastore

results = FILTER records BY 
project == ‘en’; 

sorted_results = ORDER results 
BY $1 desc;

STORE sorted_results INTO 
‘myResults’;

P
IG



Hadoop Ecosystem

HBase Scalable distributed DB for random read/write

Ambari Web-based tool for managing and monitoring 
Hadoop clusters. Also provides Dashboard

Projects Description

Sqoop SQL-to-Hadoop. Helps transferring data from 
RDBMS to HDFS

Flume Distributed service for moving large data to 
HDFS. (say, server logs to HDFS)

Avro Data serialization mechanism
Mahout Scalable Machine learning, data mining library

YARN Yet Another Resource Negotiator 
MapReduce (V2)

Zookeeper High-performance co-ordination service



Hadoop Ecosystem

Whirr Java API that allows Hadoop to run on EC2 and 
other cloud services

Projects Description

HUE UI Framework and SDK for visual Hadoop apps

Impala Interface that provides SQL Query execution. 
Implemented in C++, does not use MR, 10-100 
times faster than Hive

OOZIE Workflow engine that executes Pig, Hive, Sqoop, 
or MapReduce jobs. Workflow Engine & 
Coordinator Engine

G(i)raph Iterative graph processing system currently used 
by FB for analyzing social graph formed by users



Ingest / Propagate
Flume, Sqoop

Describe, Develop
Hive, Pig

Compute, Search
MapReduce, Giraph

Persist
File System: HDFS, MapR DFS

Serialization: Avro
DBMS: Cassandra, Riak, MongoDB, Hbase, Neo4J, CouchBase

Monitor, Admin
Ambari, Oozie, Zookeeper

Analytics, Machine Learning
Mahout

Hadoop Ecosystem



Who is using Hadoop?

• Netflix

• Yahoo!

• Facebook

• BFIS



Thank you!

Questions?


